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The SAGE team at IRISA

Simulation and Algorithms on the Grid for Environment
(ALADIN team up to 2003)
J. Erhel, B. Philippe, É. Canot, G. Pichot

Linear algebra, Sparse algorithms, Eigenvalue problems

Numerical simulation of (very) large systems, using parallelism

Global approach for coupled physical problems

Application to hydrogeology (H2OLab software) and
archaeology

→ http://www.irisa.fr/sage
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part 1: Jacobian derivation via symbolic calculation

Using Maple

for automatic differentiation
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When a jacobian matrix is needed?

Typically: solution a the non-linear system R(x) = 0

Gradient methods are useful

→ Newton and quasi-Newton methods

→ efficient methods

Jacobian is required: Ji ,j = ∂Ri

∂xj
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R(x) in Fortran 90: routine ‘deriv()’
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How to compute J?

By approximation

via Finite Differences (costly way, unstable, ...)

by hand, keeping only few terms (not without risk)

Exact computation

using Automatic Differentiation (ADIFOR, OpenAD,
Tapenade, ...)

using Symbolic Computation (Maple, Mathematica, Maxima,
...)
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How to compute J? (cont.)

Maple script: definition of R(x)
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How to compute J? (cont.)

Maple script: jacobian computation
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Using Maple

By calling only the kernel (avoiding the GUI!)

define the mathematical expressions using classical variables

compute derivatives via the ‘diff’ command

generate optimized Fortran code

output in as many files as needed

Post-processing (specific tools) – the whole process is
automatized in a Makefile

substitution of variable names (some of them are protected,
or cannot be used when generate Fortran code)

conversion from Fortran fixed syntax to Fortran free new one

other minor fix, in order to be able to be included in the
Fortran 90 source code.
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Maple output: optimized Fortran code
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How Maple output is included
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part 2: Application to numerical simulation

Heat and Mass Transfer

in saturated porous media
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ARchaeology, PHYsics and MAThematics

Rules of human behavior
Function of the combustion structures
Reconstitution of the thermal history of each hearth
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Foreword

A real prehistoric fire occupation

Determine the shape of the occupations?

Determine their mode of functioning?

What was their utility?

What was their minimal duration of burning?
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Forced evaporation in soil

Wet zone

Dry zone

Ground
Fire

Pure Conduction Water Steam Flow

Liquid/Vapor interface
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Set of equations

(ρC )e(T )
∂T (x , t)

∂t
+ div(q) =

ke(ρC )f
µf

∇P .∇T in Ω× (0, tend ],

q = −ke(T )∇T (x , t) in Ω× (0, tend ].

+ Initial conditions
+ Boundary conditions

(ρC )e = φ (ρC )f + (1− φ)(ρC )s

and
1

ke
=

φ

kf
+

1− φ
ks
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Set of equations (cont.)

Momentum (Darcy law):

~∇P = −µf

K
~Vf

Mass conservation:

∂(φρf )

∂t
+ div(ρf Vf ) = 0

Fluid constitutive law:

ρf = F (p,T )
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Set of equations (cont.)

Flow equation:

div(∇Pf ) =
φµf

Kρf

∂ρf
∂t

+
1

µf
∇µf .∇Pf

− 1

ρf
∇ρf .∇Pf −

1

K
∇K .∇Pf
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Apparent Heat Capacity Method

Bonacina et al., 1970

− easy to implement

− leads to stiff system

− optimum value for parameter ∆T ?

∆ T

Cp

k

temperature

liquid vapor
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Smoothed Functions

Cf = Cv + (Cl − Cv )σ(T ) + L
dσ

dT
(1)

kf = kv + (kl − kv )σ(T ) (2)

where

σ(T ) =
1

2
(1 + erf(ε(T − Tf ))) (3)

and
dσ

dT
=
(
επ−1/2

)
exp[−ε2(T − Tf )2] (4)

in which ε = 1/
√

2∆T
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Smoothed Functions: Schematic View

ρf = ρl + (ρv − ρl)σ(T )

ρv −→ ideal gas law

µf = µl + (µv − µl)σ(T )
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System of equations: DAE system

After spatial discretization only (Method of lines):
∂T

∂t
= f (t, x ,T ,P)

γ
∂T

∂t
+ θ

∂P

∂t
= g(t, x ,T ,P)

where γ(T ,P) and θ(T ) may vanish. (θ ≈ ∂ρf
∂P

)

This PDE system is algebraic of index one (when θ is null).
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Complete model: best approach

- all equations and properties are treated as in AHC

- same equations for the whole domain (no front tracking)

- time integration is performed by the BDF method
(quasi-Newton method is used to deal with the
nonlinearity)

- use of approx. Jacobian reduces comput. cost (but see
after)

Solver DAE (DASSL of SLATEC)
CPU time: 10 min with sparse Jacobian (50 000 unknowns)
(instead of 6 hrs with dense Jacobian)

Results for 1D, 2D, 3D-axisymmetric
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Simulation of a real fire experiment (I)

Experience with a real fire lighted on a limon-clay soil.
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Simulation of a real fire experiment (II)

Simulation vs experiment. Domain 0, 5 m × 0, 5 m.
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T5 experimental, depth 2,5 cm
T5 numerical, depth 2,5 cm
T1 experimental, depth 3,5 cm
T1 numerical, depth 3,5 cm
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Non homogeneous permeability: motivations

The presence of a long plateau in some temperature
curves is a big issue (cf. the last experiment)
→ introduction of non-uniform permeability in the soil

When big contrast in permeability is used (over than
100), the approximated Jacobian computation lead to
unstabilities
→ exact derivation of the Jacobian, via Maple, with
optimized Fortran ouput.
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Unstable result from use of approx. jacobian

→ Wrong simulation: blue curve must be strictly increasing!
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Jacobian derivation via Maple

Maple source script:

- definition of vector function: 180 lines
- jacobian computation: 210 lines

Generated Fortran code: 1900 lines (in 12 files)
to be compared to the ‘deriv()’ routine: 110 lines

Perl script for variables substitution: 10 lines

Performance: (code 3D-axi; mesh 120x200)

- approx. jacobian: binary size = 99.8 kb; CPU = 22.0 s
- exact jacobian: binary size = 131.6 kb; CPU = 35.8 s
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Non homogeneous permeability: illustration

Tiling of square blocks with
high-contrast permeability

(ratio: 1000)

- typical block size: few
millimeters

- double vertical symmetry
→ restricted computational
domain
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Non homogeneous permeability : simulation

domain size : 2.5 cm × 20 cm

Temperature histories : blue curve (point
B), red curve (point A), black curve

(homogeneous case)
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Temperature and pressure fields
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Conclusions and perspectives

Interesting features are shown in the numerical simulation.

Global approach is robust.

Better stability whith exact jacobian matrix (Maple).

Studying the stability of the model and the sensitivity of
the used parameters.

Extension of this model to the 3D geometry.

Answering the questions of archaeologists (inverse pb).
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